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1 Simple Linear Regression (SLR)

Simple Linear Regression is a method to model the relationship between one predictor
variable (X) and one outcome variable (Y), assuming the relationship is roughly linear.
Its purpose is to predict the outcome variable based on the predictor and to quantify how
much change in the predictor leads to change in the outcome. The SLR equation takes the
form

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜖,

where 𝛽0 is the intercept, 𝛽1 is the slope, and 𝜖 is random error. SLR helps us understand
and predict how one variable influences another, under assumptions that the relationship is
linear, the errors are normally distributed and have constant variance, and observations are
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independent. In practice, SLR is like drawing the best-fitting straight line through a scatter
plot to make sense of patterns in the data. For example, we might ask: how much does a
student’s exam score improve for each extra hour of study?

library(ggplot2)
library(stats)
# set your directory
setwd("~/Desktop/RA,TA,SAIG/DSPG/Stat Lectures")
# load the data file
data_SLR <- read.csv(file="exam_data")
# scatter plot
ggplot(data_SLR, aes(x=study_hours, y=exam_score))+

geom_point()+
labs(title="Relationship between Study Hours and Exam Scores")+

theme_minimal()

Scatter plots are super important! They help us to see if there is a pattern, a linear trend,
or outliers before we fit the model. Here, you see a clear upward trend: more study hours
generally means higher exam scores.

Now, let’s fit the model: exam_score = 𝛽0 + 𝛽1 study_hours + 𝜖𝑖.

# run SLR models with lm function
SLR <- lm(exam_score~study_hours, data=data_SLR)
# output
summary(SLR)

The simple linear regression model examined the relationship between exam score and study
hours. The intercept of about 37.6 suggests that a student who studied zero hours would
be expected to score roughly 37.6 points on the exam, which represents the model’s baseline.
The estimated slope of 5.52 means that for each additional hour of study, the expected exam
score increases by about 5.5 points. This effect is highly statistically significant, with a p-value
less than 2e-16, providing strong evidence that more study hours are associated with higher
exam scores. The model’s R-squared value is approximately 0.85, indicating that about 85%
of the variability in exam scores can be explained by study hours alone, which is quite high
and suggests an excellent fit. The residual standard error is about 5.1, meaning the typical
difference between the observed scores and the predicted scores is around 5 points. Overall,
these results show a strong positive relationship between the number of hours studied and
exam performance, with more study time leading to substantially higher predicted scores.
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1.1 Model Assumption Check

1.1.1 Independence and Constant Variance

data_SLR$residuals <- resid(SLR)
data_SLR$fitted <- fitted(SLR)
ggplot(data_SLR, aes(x = fitted, y = residuals)) +

geom_point() +
geom_hline(yintercept = 0, color = "red") +
labs(

title = "Homoscedasticity Check",
x = "Fitted Values",
y = "Residuals"

) +
theme_minimal()

This code checks two important assumptions of simple linear regression: independence and
constant variance (homoscedasticity) of the residuals. After extracting the residuals and
fitted values from the regression model, the code plots the residuals against the fitted values
using ggplot2, with a horizontal red reference line at zero.

This plot helps to assess whether the residuals are randomly scattered around zero without any
clear pattern, which supports the independence assumption (no time or sequence pattern) as
well as homoscedasticity, which requires the vertical spread of residuals to remain roughly
the same across the range of predicted values.

In the displayed plot, the residuals appear fairly randomly distributed around zero, with no
obvious systematic pattern or trend, which suggests that the independence assumption is
reasonable. Additionally, the spread of the residuals is relatively even across fitted values,
supporting the constant variance assumption. There is some slight variability at higher fitted
values, but no severe funnel or curved patterns, indicating the model meets these assumptions
well enough for valid inference.

1.1.2 Linearity

ggplot(data_SLR, aes(x = study_hours, y = exam_score)) +
geom_point() +
geom_smooth(method = "lm", se = TRUE, color = "blue") +
labs(

title = "Linearity Check",
x = "Study Hours",
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y = "Exam Score"
) +
theme_minimal()

This plot is designed to check the linearity assumption of simple linear regression, which
requires that the relationship between the predictor (study hours) and the response variable
(exam score) is approximately linear. The code uses ggplot2 to plot the raw data points and
overlays a linear trend line with a confidence band using geom_smooth(method = "lm"). In
the resulting plot, the blue regression line captures the overall trend of the data, while the
shaded gray area shows the 95% confidence interval for the line. The pattern of data points
closely follows a straight line, with no evidence of curves or major deviations, supporting the
linearity assumption. This means a linear model is appropriate for describing the relationship
between study hours and exam scores.

Visualizing the linear relationship in this way is a very important first step before interpreting
the model’s coefficients, because if the true relationship were curved or non-linear, the linear
regression results could be misleading. This check reassures us that using a straight line to
model these data makes sense.

1.1.3 Normality

ggplot(data_SLR, aes(x = residuals)) +
geom_histogram(bins = 15, fill = "lightblue", color = "black") +
labs(

title = "Histogram of Residuals",
x = "Residuals",
y = "Count"

) +
theme_minimal()

This plot is used to check the normality assumption of simple linear regression, which says
that the residuals should be approximately normally distributed. The code uses ggplot2 to
create a histogram of the residuals from the model, with 15 bins and a light blue fill to make
the distribution easy to see.

The histogram shows the counts of residuals across their range. Ideally, for normality, we
hope to see a roughly bell-shaped, symmetric pattern centered around zero. In this case, the
histogram appears reasonably symmetric, with most residuals clustered around zero and fewer
residuals farther from zero on either side. There are no dramatic gaps or clear skew, although
there might be a slightly longer right tail, but nothing extreme.

This supports the idea that the residuals are approximately normal, which is important because
normal residuals help ensure the reliability of hypothesis tests and confidence intervals in linear
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regression. It is always good practice to combine this histogram with a QQ plot for a more
detailed normality check, which you can do next.

ggplot(data_SLR, aes(sample = residuals)) +
stat_qq() +
stat_qq_line(color = "red") +
labs(

title = "Normal Q-Q Plot of Residuals"
) +
theme_minimal()

This QQ plot is another way to check the normality assumption of residuals in simple
linear regression. The code uses ggplot2 to plot the quantiles of the model’s residuals
against the theoretical quantiles from a normal distribution, adding a reference red line with
stat_qq_line().

If the residuals are approximately normally distributed, then the points on the QQ plot should
fall roughly along the red line. In this output, most points follow the red line quite closely in
the middle range, with only a few mild deviations at the tails, especially on the upper right
side. This is generally acceptable for regression, as slight deviations in the tails are common
and not usually a serious concern.

Overall, this QQ plot supports the histogram finding that the residuals are approximately
normal, which validates the regression’s inference procedures such as confidence intervals and
p-values. Using both a histogram and a QQ plot together is a good practice to build confidence
that the normality assumption is reasonable for the data.

2 Multiple Linear Regression (MLR)

Multiple linear regression (MLR) is a statistical technique that models the relationship between
one continuous outcome variable and two or more predictor variables. It extends simple linear
regression by allowing you to include multiple independent variables simultaneously, so you
can examine their combined effects on the outcome while adjusting for one another. The MLR
equation takes the form

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 + 𝜖,
where �0 is the intercept, 𝛽1 through 𝛽𝑝 are the slopes for each predictor, and � is random error.
MLR helps you understand how each predictor is associated with the outcome while holding
the other predictors constant. In practice, MLR is a powerful way to answer questions like
“How does salary change depending on experience, education level, and hours worked, all at
the same time?”
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# load the salary_data file
salary_data <- read.csv("salary_data")
# see the first six data
head(salary_data)
# visualization: experiance vs. salary by education level
ggplot(salary_data, aes(x=experience, y=salary, color=education_level)) +

geom_point(size=2, alpha=0.7) +
labs(title="Employee Salaries by Experience and Education Level",

x="Years of Experience",
y= "Annual Salary",
color="Education Level")+

theme_minimal()

# visualization: hours per week vs. salary by education level
ggplot(salary_data, aes(x=hours_per_week, y=salary, color=education_level)) +

geom_point(size=2, alpha=0.7) +
labs(title="Employee Salaries by Weekly Hours and Education Level",

x="Hours Worked per Week",
y= "Annual Salary",
color="Education Level") +

theme_minimal()

The first scatter plot shows how salary increases with experience, with each education level
colored differently. You can see that higher education levels tend to cluster higher up, showing
higher salaries for the same experience.

The second scatter plot shows how salary changes with hours worked per week, with each
education level. There does not appear to be a very strong upward or downward trend along
the x-axis, suggesting that hours worked per week alone does not have a strong relationship
with annual salary. Salaries are spread out across different hours worked, meaning people
working 35 hours and those working 45 hours can have similar salaries. Also, Higher education
levels tend to sit higher up on the salary scale, regardless of hours worked.

# set the baseline category as High_school
salary_data$education_level <- factor(salary_data$education_level, ordered = FALSE)
salary_data$education_level <- relevel(salary_data$education_level, ref = "High School")

# run multiple linear regression
MLR <- lm(salary ~ experience + education_level + hours_per_week, data = salary_data)
summary(MLR)

The multiple linear regression results show that experience, education level, and hours worked
per week were used to predict annual salary. The intercept of about $35,480 represents the
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expected salary for a person with a high school education (the reference group), zero years of
experience, and working zero hours per week, although this is a hypothetical baseline. Each
additional year of experience is associated with an increase of about $1,908 in salary, holding
other variables constant, and this effect is highly significant. Compared to employees with
a high school education, those with a bachelor’s degree earn about $5,375 more on average,
those with a master’s degree earn roughly $10,936 more, and those with a PhD earn about
$15,382 more, adjusting for experience and weekly hours; all these differences are statistically
significant. On the other hand, the hours worked per week showed an estimated effect of about
$116 per additional hour, but this was not statistically significant (p = 0.22), suggesting we
cannot conclude a real effect of working hours on salary after accounting for education and
experience. The model explains approximately 86.5% of the variation in salaries (R-squared
= 0.865), indicating an excellent fit, and the overall F-test shows the model is statistically
significant as a whole. Overall, this analysis suggests that education level and experience are
important predictors of salary, while the number of hours worked per week does not show a
clear effect in this data.

3 Two Sample T-Test (Comparing Two Groups)

A two-sample t-test is a statistical method used to compare the means of two independent
groups to determine if there is evidence of a significant difference between them. This test is
commonly applied when you have one categorical variable with two groups (such as Campaign
A vs. Campaign B) and a continuous outcome variable (like purchase amount). The test
assumes that observations are independent, the outcome variable is approximately normally
distributed in each group, and that the variances are roughly equal (though the Welch version
of the test relaxes that last assumption). The null hypothesis states that the two groups have
equal population means, while the alternative hypothesis suggests a difference exists.

campaign_data <- read.csv("campaign_data")
# check the data
head(campaign_data)

ggplot(campaign_data, aes(x=campaign, y=purchase_amount, fill=campaign)) +
geom_boxplot() +
labs(

title = "Comparison of Purchase Amounts by Campaign",
x = "Campaign",
y = "Purchase Amount ($)"

) +
theme_minimal()
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The boxplot created with ggplot2 shows the distribution of purchase amounts for each cam-
paign group. The plot indicates that Campaign B tends to have higher purchase amounts than
Campaign A: the median (middle line of the box) for Campaign B is higher, and the upper
quartile also appears greater. This suggests that Campaign B may have encouraged higher
spending. The boxplot also helps us quickly check for outliers and see if the spread of the data
looks similar between groups.

# two-sample t-test
t.test(purchase_amount ~ campaign, data = campaign_data)

This two-sample t-test compares the mean purchase amounts between Campaign A and Cam-
paign B. The test statistic is approximately –4.81, with about 170 degrees of freedom, and a
very small p-value of 3.36 × 10��, which is far below the usual 0.05 threshold. This means we
reject the null hypothesis and conclude that there is a statistically significant difference in av-
erage purchase amounts between the two campaigns. Specifically, the mean purchase amount
for Campaign A was about $50.63, while for Campaign B it was about $60.35, suggesting that
Campaign B led to higher spending on average. The 95% confidence interval for the difference
in means ranges from –13.7 to –5.7 dollars, which does not include zero, further supporting
that the difference is significant. Overall, this provides strong evidence that Campaign B is
more effective in increasing customer purchase amounts than Campaign A.

summary(lm(purchase_amount ~ campaign, data=campaign_data))

4 ANOVA (Comparing Multiple Groups)

Analysis of Variance, or ANOVA, is a statistical method used to compare the means of three
or more independent groups. It tests whether at least one group mean is significantly different
from the others.

The ANOVA equation takes the form

𝑌𝑖𝑗 = 𝜇 + 𝛼𝑗 + 𝜖𝑖𝑗,
where 𝜇 is the grand mean, 𝛼𝑗 effect of being 𝑗 group, and � is random error.

The ANOVA procedure partitions the total variability in the data into between-group differ-
ences and within-group differences, then compares these using an F-test. The null hypothesis
is that all group means are equal, while the alternative hypothesis is that at least one group
differs.

𝐻0 ∶ 𝛼1 = 𝛼2 = ⋯ = 𝛼𝐽 vs. 𝐻1 ∶ At least one group is different
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ANOVA assumes the data are normally distributed within groups, have equal variances, and
are based on independent observations. If the ANOVA test is significant, you can follow up
with post-hoc tests (like Tukey HSD) to pinpoint which groups differ from each other. ANOVA
is a fundamental tool for analyzing experiments, marketing campaigns, educational methods,
and any context involving multiple groups to be compared on a continuous outcome. Here, we
will use ANOVA to compare purchase amounts across multiple campaigns (Campaign A, B,
or C).

# load the multiple campaign data
multiple_campaign_data <- read.csv("multiple_campaign_data")
# see the first six observations
head(multiple_campaign_data)
# visualization : boxplot
ggplot(multiple_campaign_data, aes(x=campaign, y=purchase_amount, fill=campaign)) +

geom_boxplot() +
labs(

title = "Purchase Amount by Campaign",
x = "Campaign",
y = "Purchase Amount ($)"

) +
theme_minimal()

The boxplots display the distribution of purchase amounts for each campaign group (A, B,
and C). For each campaign, the box represents the middle 50% of the data (the interquartile
range), with the horizontal line inside the box showing the median purchase amount. The
vertical lines (whiskers) extend to show the range of most of the data, and dots outside these
whiskers represent outliers.

In this plot, Campaign B’s box is higher overall, with a higher median and a wider spread
of purchase amounts, suggesting that customers exposed to Campaign B tend to spend more
and with greater variability. Campaign A has the lowest median and a tighter box, showing
lower and more consistent purchase amounts. Campaign C sits somewhere in between, with a
median higher than Campaign A but lower than B, and it shows a few outliers on the higher
side.

Overall, these boxplots visually suggest that there are differences in typical spending between
the campaigns, with Campaign B likely being the most successful, and provide a good moti-
vation to test these differences formally with ANOVA.

There are two ways to run ANOVA models in R.

# ANOVA
# option 1
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anova_model <- aov(purchase_amount ~ campaign, data=multiple_campaign_data)
summary(anova_model)
# Post-hoc test if needed
TukeyHSD(anova_model)

The ANOVA results in the first summary test whether there are any differences in mean
purchase amounts across Campaigns A, B, and C. The F-test is highly significant (F = 25.09,
p < 0.0000000001), which means there is strong evidence that at least one campaign differs
from the others in average purchase amount. However, ANOVA does not say which pairs of
campaigns are different, so a post-hoc test is needed.

The Tukey HSD post-hoc test provides those pairwise comparisons. It shows that Campaign
B has an average purchase amount about $13.12 higher than Campaign A (p < 0.0001),
Campaign C is about $6.38 higher than Campaign A (p = 0.0019), and Campaign C is about
$6.74 lower than Campaign B (p = 0.0009). All of these differences are statistically significant
after adjusting for multiple comparisons.

# option 2: preferred
anova_lm <- lm(purchase_amount~campaign, data=multiple_campaign_data)
summary(anova_lm)

The alternative approach with lm() fits the same ANOVA in a regression framework, coding
Campaign A as the baseline category. The coefficients confirm the same story:

1. Campaign B is associated with a $13.12 higher average purchase than Campaign A (p
< 0.0001),

2. Campaign C is associated with a $6.38 higher average purchase than Campaign A (p =
0.00065).

This linear model formulation makes it easier to interpret the differences directly against the
reference group, Campaign A. The residual standard error and R-squared match the ANOVA
approach, showing consistent results.

Overall, these outputs strongly support that Campaign B performed best in encouraging higher
spending, followed by Campaign C, with Campaign A performing worst.

5 Logistic Regressions

Logistic regression is a statistical modeling technique used when the outcome variable is binary
— that is, it has only two possible values, often coded as 0 or 1. Instead of predicting a
continuous outcome like linear regression, logistic regression models the probability that an
observation belongs to a particular category (usually coded as 1). It does this by estimating
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the log-odds of success as a linear combination of predictor variables. Logistic regression is
very popular for medical trials, marketing conversion rates, and other situations where the
outcome is yes/no, success/failure, or event/no event. Interpreting logistic regression results
typically focuses on odds ratios, which describe how the odds of the outcome change with each
predictor.

# load the treatment data
treatment_data <- read.csv("treatment_data")
# quick check frequency table
table(treatment_data$treatment, treatment_data$success)

ggplot(treatment_data, aes(x=treatment, fill=factor(success))) +
geom_bar(position="fill") +
scale_y_continuous(labels=scales::percent_format()) +
labs(

title = "Treatment Success Rates",
y = "Percentage",
fill = "Success"

) +
theme_minimal()

This simple frequency table suggests that the New treatment might be performing somewhat
better than the Standard treatment.

Next, you used ggplot to create a bar plot showing the proportion of successes within each
treatment group. The position=\"fill\" argument rescales the bars to 100%, making it
easier to compare relative success rates rather than raw counts. According to the bar plot, the
New treatment group has a higher proportion of successes (shown in teal) than the Standard
group, though both have fairly high failure rates.

# logistic regression
model <- glm(success ~ treatment + age + gender, family=binomial, data=treatment_data)
summary(model)

This logistic regression model predicts the probability of treatment success using three pre-
dictors: treatment group, age, and gender. The intercept represents the log-odds of success
for the reference category, which is the new treatment, at age 0, for females. The coefficient
for treatmentStandard is –0.742, which means that being in the standard treatment group
is associated with lower log-odds of success compared to the new treatment, adjusting for age
and gender. If we exponentiate this coefficient, exp(–0.742) � 0.48, suggesting that the odds
of success in the standard treatment group are about 52% lower than in the new treatment
group. This effect is statistically significant with a p-value of about 0.039, supporting the
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conclusion that the new treatment has higher success odds.

The coefficient for age is about –0.034, with a p-value of 0.073, indicating a possible (though
not strongly significant) trend where each additional year of age slightly reduces the odds of
success; the odds ratio exp(–0.034) � 0.97 means about a 3% decrease in odds per year of
age. For gender, males have a coefficient of –0.55 compared to females, corresponding to an
odds ratio of exp(–0.55) � 0.58, suggesting about 42% lower odds of success compared to
females, although this effect is not statistically significant (p = 0.126).

Overall, the model suggests that treatment group is the most important predictor, with the new
treatment performing significantly better than the standard treatment, even after adjusting for
age and gender. The model’s residual deviance (196 on 196 degrees of freedom) is smaller than
the null deviance (205), indicating the model explains some variability in success outcomes.
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